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Abstract

The paper considers properties of compactly supported, locally linearly independent refinable

function vectors F ¼ ðf1;y;frÞ
T ; rAN: In the first part of the paper, we show that the interval

endpoints of the global support of fn; n ¼ 1;y; r; are special rational numbers. Moreover, in

contrast with the scalar case r ¼ 1; we show that components fn of a locally linearly independent

refinable function vector F can have holes. In the second part of the paper we investigate the

problem whether any shift-invariant space generated by a refinable function vector F possesses a

basis which is linearly independent over ð0; 1Þ:We show that this is not the case. Hence the result

of Jia, that each finitely generated shift-invariant space possesses a globally linearly independent

basis, is in a certain sense the strongest result which can be obtained.
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1. Introduction

In this paper, we are especially interested in properties of refinable function
vectors which are locally linearly independent.
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Let F ¼ ðf1;y;frÞ
T ; rAN; rX1; be a vector of compactly supported integrable

functions on R: A function vector F is said to be refinable if it satisfies a refinement
equation

FðtÞ ¼
X
kAZ

AðkÞFð2t � kÞ; tAR; ð1Þ

where fAðkÞg is a finitely supported sequence of ðr � rÞ-matrices.
We say that F is linearly independent over a nonempty open subset G of R; if for any

sequences c1;y; cr on Z;Xr

n¼1

X
kAZ

cnðkÞfnð	 � kÞ ¼ 0 on G

implies that cnðkÞ ¼ 0 for all kAInðGÞ; n ¼ 1;y; r; where InðGÞ contains all kAZ with
fnð	 � kÞc0 on G: Further, F is locally linearly independent (l. l. i.) if it is linearly
independent over any nonempty open subset G of R:
We say that F is globally linearly independent (g. l. i.) if, for any sequences c1;y; cr

on Z;Xr

n¼1

X
kAZ

cnðkÞfnð	 � kÞ ¼ 0 on R

implies that cnðkÞ ¼ 0 for all n ¼ 1;y; r and all kAZ; see [13].
The concept of local linear independence has been intensively studied in spline

approximation (see e.g. [4,11,23]). In wavelet analysis the notions of global and local
linear independence have been used as a tool for wavelet approximation and for
construction of wavelets on the interval (see e.g. [5,12,17,18]).
For r ¼ 1; the refinement equation (1) is of the form

fðxÞ ¼
Xb

k¼a

AðkÞfð2t � kÞ; a; bAZ: ð2Þ

In this case, it was shown by Lemarié [17] that the global linear independence is
equivalent to the local linear independence on the unit interval ð0; 1Þ: Sun [25]
stated that local and global linear independence are equivalent for a function f
satisfying (2).
Let the global support of an integrable function f ; gsupp f ; be the smallest interval

ICR with supp fDI : Then for a l. l. i. function f satisfying (2) it follows that
supp f ¼ gsupp f ¼ ½a; b� if AðaÞ;AðbÞa0; i.e., f has integer support. Moreover, f
cannot have a hole, i.e., there is no interval of Lebesgue measure greater than zero
lying inside the global support of f where f vanishes. Further, the integer translates
of a l. l. i. function f satisfy the minimality property, i.e., for every compactly
supported c being a linear combination of integer translates of f it follows that
gsupp c+ gsupp fð	 � kÞ for some kAZ; and equality holds if and only if c ¼
cfð	 � kÞ for some constant ca0 (see [3,21]).
For compactly supported refinable function vectors F; global and local linear

independence are no longer equivalent (see [7]).
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The two properties, local as well as global linear independence can be completely
characterized by the matrix mask fAðkÞg of F; see e.g. [1,6,9,16,26] for the univariate
vector case, [10] for multivariate scaling functions and [7] for the multivariate vector
case.
In this paper, we study the support properties of l. l. i. function vectors. While for a

single refinable l. l. i. function f we have the above-mentioned useful properties, little
is known for the vector case. Estimates and computations of the global support of
refinable function vectors F have been given by Heil and Collela [8], Ruch et al.
[22,24] and by Plonka [20].
We shall answer the following questions in the first part of the paper: What does

the global support of the components for l. l. i. function vectors look like? Can
components of a l. l. i. refinable function vector F have holes? Is a g. l. i. function
vector also linearly independent over a finite interval?
In the second part of the paper, we study bases of shift-invariant spaces. As

shown by Jia [12], any finitely generated shift-invariant space possesses a
globally linearly independent basis (see Theorem B in Section 4). One can ask the
question, whether this result can be strengthened in the following direction:
Does any shift-invariant space generated by a refinable function vector F
have a basis which is linearly independent over ð0; 1Þ? Unfortunately this is not
the case. Hence, the result of Jia is in this sense the strongest result which can be
obtained.
The paper is organized as follows. In Section 2, we briefly recall the

characterization of local linear independence of F in terms of the mask. In
Section 3, we study support properties of l. l. i. function vectors. In particular, we
show that the global supports of the components fn; n ¼ 1;y; r; of F start and end
with special rational numbers. We present a compactly supported, continuous,
refinable function vector, which is l. l. i. but has a component possessing a hole in its
global support. We also show that, if F satisfies (1) with AðkÞ ¼ 0 for ko0 and
k4N; and if Að0Þ and AðNÞ do not contain zero rows, then the components of F
have no holes.
Finally, in Section 4, we present an example of a refinable function vector which is

g. l. i. but not linearly independent over ð0; 1Þ; and where the shift-invariant space
generated by F does not possess a basis being linearly independent over (0,1).
Moreover, we show that there are refinable function vectors being g. l. i. but linearly
dependent over any finite interval.

2. Characterization of local linear independence

Let us briefly recall the characterization of local linear independence from
Goodman et al. [7] and Cheung et al. [2].
We assume that the mask fAðkÞg is supported on ½0; N�; i.e., for ko0 and k4N

the ðr � rÞ-matrices AðkÞ are zero matrices. Let

UðtÞ :¼ ðFðt þ kÞÞN�1
k¼0 for tA½0; 1Þ:
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Then, for each tA½0; 1Þ; UðtÞ is a vector of length rN: With the help of the two-
slanted block matrices

A0 :¼ ðAð2k � lÞÞN�1
k;l¼0; A1 :¼ ðAð2k � l þ 1ÞÞN�1

k;l¼0

the refinement equation (1) implies

U
t

2

� �
¼ A0UðtÞ and U

t þ 1

2

� �
¼ A1UðtÞ ð3Þ

for tA½0; 1Þ: It follows that for e1;y; enAf0; 1g; we have

U
e1
2
þ?þ en

2n
þ t

2n

� �
¼ Ae1yAen

UðtÞ tA½0; 1Þ:

Suppose that FAðL1ðRÞÞr is a nontrivial compactly supported solution of (1) (with
AðkÞ ¼ 0 for ko0 and k4N). Let

v0 :¼
Z 1

0

UðtÞ dt ¼
Z 1

0

Fðt þ kÞ dt

� �N�1

k¼0
ARrN :

Then v0 is a right eigenvector of 1
2
ðA0 þA1Þ to the eigenvalue 1 ([2, Lemma 3.1]).

Now, let V be the minimal common invariant subspace of fA0; A1g generated by
v0: Further, let B ¼ ðBðk; lÞÞ be an ðrN � dim VÞ-matrix such that the columns of B
form a basis of V : For continuous functions, instead of v0 we can also choose a right
eigenvector v ofA0 to the eigenvalue 1 in order to generate the space V : In this case,
V contains the vectors UðtÞ with tA½0; 1Þ; since for each t there is a sequence of
dyadic numbers with the limit t: We have:

Theorem A. (Cheung et al. [2], Goodman et al. [7]). Let F be a compactly supported,
integrable solution vector of (1) with AðkÞ ¼ 0 for ko0 and k4N: Then we have

(1) F is linearly independent over ð0; 1Þ if and only if the nonzero rows of B are

linearly independent.
(2) F is locally linearly independent if and only if for all n with 0pnp2rN and all

e1;y; enAf0; 1g the nonzero rows of Ae1yAen
B are linearly independent.

In [7], a procedure is presented which simplifies the application of Theorem A in
order to investigate, if F is locally linearly independent or not.

3. Supports of locally linearly independent refinable vectors

As known, for l. l. i. refinable functions f satisfying (2), it follows that supp f ¼
½a; b�; and in particular, f has no holes (see [17]). Now we want to consider the
support properties of l. l. i. function vectors in more detail.
First, the local linear independence implies the following restrictions on the

starting point and endpoint of the global supports of the components fn; n ¼ 1;y; r;
of the refinable function vector F:

G. Plonka, D.-X. Zhou / Journal of Approximation Theory 122 (2003) 24–41 27



Theorem 1. Let F ¼ ðf1;y;frÞ
T ; rAN; rX1; be a refinable, locally linearly

independent vector of compactly supported functions fnAL1ðRÞ: Then the starting

point and the endpoint of gsupp fn; n ¼ 1;y; r; is a rational number of the form

k þ cr; where kAZ and crAJr with

Jr :¼
m

ð2l � 1Þ 2r�l
: l ¼ 1;y; r; m ¼ 0;y; ð2l � 1Þ 2r�l � 1

� �
:

In particular,

J1 ¼ f0g; J2 ¼ 0;
1

2
;
1

3
;
2

3

� �
;

J3 ¼ 0;
1

4
;
1

2
;
3

4
;
1

6
;
1

3
;
2

3
;
5

6
;
1

7
;
2

7
;
3

7
;
4

7
;
5

7
;
6

7

� �
:

Proof. Let F ¼ ðf1;y;frÞ
T with gsupp fn ¼ ½an; bn�: We can assume that all

starting points lie in ½0; 1Þ; this is obtained by shifting the components of F without
changing the local linear independence. Since the components of F are compactly
supported and F is l. l. i. and refinable, the refinement mask of F is finite, i.e., there
exist a; bAZ with

FðtÞ ¼
Xb

k¼a

AðkÞFð2t � kÞ; tAR

with ðr � rÞ-matrices AðkÞ ¼ ðAm;nðkÞÞr
m;n¼1: Further, for tAR\½am; bm� we have

fmðtÞ ¼ 0 ¼
Xb

k¼a

Xr

n¼1
Am;nðkÞ fnð2t � kÞ

and the local linear independence of F implies that for all k with Am;nðkÞa0;

gsupp fnð2 	 �kÞDgsupp fm; m; n ¼ 1;y; r:

Hence

an

2
þ k

2
;
bn

2
þ k

2

	 

D½am; bm�;

such that the starting points (and endpoints) satisfy kX2am � an (and kp2bm � bn)

for all k with Am;nðkÞa0: Moreover, for each fixed m; one of the r inequalities for the

starting points (and for the endpoints, respectively) must be an equality. Hence, for
each fixed m; there exists at least one nAf1;y; rg with 2am � anAZ (and one

*nAf1;y; rg with 2bm � b*nAZ).

We now consider the starting points more precisely. Since 0pano1 for n ¼
1;y; r; we have (at least) r relations of the form

2am � anðmÞAf0; 1g; m ¼ 1;y; r; nðmÞAf1;y; rg;
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and we can find a cycle fm1;y; mdg; dpr; such that

2amj
� amjþ1Af0; 1g; j ¼ 1;y; d � 1; 2amd

� am1Af0; 1g: ð4Þ

Considering the circulant d � d matrix

circðx0; x1;y; xd�1Þ :¼

x0 xd�1 xd�2 y x1

x1 x0 xd�1 y x2

^ & & & ^

xd�2 xd�3 & & xd�1

xd�1 xd�2 y x1 x0

0BBBBBB@

1CCCCCCA
we obtain from (4) a system of linear equations

circð2; 0;y; 0;�1Þa ¼ e;

where a :¼ ðam1 ;y; amd
ÞT is the vector of starting points and e is an integer vector

ðd1;y; ddÞT with djAf0; 1g: Hence, with

ðcirc ð2; 0;y; 0;�1ÞÞ�1 ¼ 1

2d � 1
circð2d�1; 1; 2;y; 2d�2Þ

we find

a ¼ 1

2d � 1
circð2d�1; 1; 2;y; 2d�2Þe:

Observe that at least one component dn ðn ¼ 1;y; dÞ must be zero since
am1 ;y; amd

A½0; 1Þ: It follows that each amj
must be a rational number of the form

m
2d�1; mAf0;y; 2d � 2g:
Further, for each am0 with m0 not belonging to a cycle, there exists a chain

fm01;y; m0gg with m01 ¼ m0;

2am0
j
� am0

jþ1
Af0; 1g for j ¼ 1;y; g � 1

and m0g belongs to a cycle, but m
0
g�1 does not. Hence, am0g ¼ m

2d�1o1 for some dor and

some mAf0;y; 2d � 2g and

am0
j
¼ m0

ð2d � 1Þ2g�j
o1

with some m0Af0;y; ð2d � 1Þ2g�j � 1g; where m0 depends on m and the number of
equations of the form 2am0

j
� am0

jþ1
¼ 1 in the chain.

Observing that d þ g � 1pr; we find am0 ¼ m0

ð2d�1Þ2g�1AJr:

For the endpoints of the global support of fn; the proof follows analogously. &

While the support conditions in Theorem 1 are necessary consequences of the local
linear independence of F; there may not exist refinable, l. l. i. function vectors with
such exotic support intervals. However, for r ¼ 2 we can show in the following
examples, that indeed, all starting points and endpoints in J2 can occur.
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Example 1. Let F ¼ ðf1;f2Þ
T be a nonzero solution of the refinement equation

FðtÞ ¼
0 0

4=5 3=5

 !
Fð2tÞ þ

1=2 1=4

1=3 5=6

 !
Fð2t � 1Þ

þ
�1=5 3=5

0 0

 !
Fð2t � 2Þ:

Then F is continuous, locally linearly independent, and supp f1 ¼ ½1=2; 2�;
supp f2 ¼ ½0; 3=2�; see Fig. 1.

Proof. We have

A0 ¼

0 0 0 0

4=5 3=5 0 0

�1=5 3=5 1=2 1=4

0 0 1=3 5=6

0BBB@
1CCCA; A1 ¼

1=2 1=4 0 0

1=3 5=6 4=5 3=5

0 0 �1=5 3=5

0 0 0 0

0BBB@
1CCCA:

In order to show continuity of f1 and f2; we apply the following result of Jia et al.

[15]. Let fAðkÞgN
k¼0 be a finite refinement mask satisfying that 1

2

PN
k¼0 AðkÞ has one

simple eigenvalue 1 and all other eigenvalues lie inside the unit circle. Then the
subdivision scheme associated with A converges uniformly if and only if

(a) The mask fAðkÞgN
k¼0 satisfies the sum rule of order 1; i.e., the matrices A0 and

A1 both have the eigenvalue 1; and there exists a vector e1ARrN with eT
1 A0 ¼

eT
1 A1 ¼ eT

1 :
(b) Considering the subspace U :¼ fuARrN : eT

1 u ¼ 0g the joint spectral radius of

A0jU and A1jU satisfies

rðA0jU ;A1jUÞo1:

Observe that the joint spectral radius is given by

rðA0jU ;A1jUÞ ¼ inf
nX1

ðmaxfjjAe1 jUyAen
jU jj : eiAf0; 1g; i ¼ 1;y; ngÞ1=n

with an arbitrary matrix norm in RrN :

0.5 1 1.5 2

-0.2

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2

0.25

0.5

0.75

1

1.25

1.5

Fig. 1. L. l. i. FðtÞ with supp f1 ¼ ½1
2
; 2� and suppf2 ¼ ½0; 3

2
�:

G. Plonka, D.-X. Zhou / Journal of Approximation Theory 122 (2003) 24–4130



In our example, the matrix 1
2

P2
k¼0 AðkÞ has the eigenvalues 1 and �2=15: Further,

the mask satisfies the sum rule of order 1 with e1 ¼ ð2; 3; 2; 3ÞT : Consider the
subspace

U :¼ fu ¼ ðu1; u2; u3; u4ÞTAR4 : 2u1 þ 3u2 þ 2u2 þ 3u4 ¼ 0g:

We choose a basis of U as u1 ¼ ð0; 64=5; 84=5;�24ÞT ; u2 :¼ ð21; 0; 0;�14ÞT and

u3 :¼ ð�15; 42;�48; 0ÞT : Then the matrix representations of A0jU and A1jU under

this basis are

3=5 161=440 27=44

0 34=165 1=11

0 238=825 7=55

0B@
1CA;

�7=33 �7=22 0

4=11 6=11 0

244=825 7=110 �1=5

0B@
1CA:

The maximum column sum norms of these two matrices are less than 1; hence the
joint spectral radius is less than 1: Thus, the subdivision scheme associated with this
mask converges uniformly and the solution F is continuous.
Now we prove that F is l. l. i. The space V ; as defined in Section 2, is spanned by

the right eigenvector v0 of
1
2
ðA0 þA1Þ to the eigenvalue 1; v0 ¼ ð3=2; 9; 7=2; 1ÞT ; and

A1v0;A
2
0v0;A1A0v0; i.e., V has full dimension 4: Thus, by Theorem A, F is linearly

independent over ð0; 1Þ and the matrix B can be chosen as the ð4� 4Þ-identity
matrix.
Now, we have rankA0 ¼ rankA1 ¼ 3 and A0 has a zero row at the top and A1

has a zero row at the bottom. Further,A0A0;A0A1; A1A0;A1A1; all have rank 3
andA0A0;A0A1 have one zero row at the top, andA1A0;A1A1 a zero row at the
bottom. Using the procedure proposed in [7], it already follows that F is l. l. i.

Moreover, the structure of Að0Þ and Að2Þ implies that supp f1 ¼ ½1
2
; 2� and

supp f2 ¼ ½0; 3
2
�: &

Example 2. (cf. Goodman and Lee [6]). Consider F ¼ ðf1; f2Þ
T with

FðtÞ ¼
0 1

0 0

 !
Fð2tÞ þ

3=4 1=4

1=4 3=4

 !
Fð2t � 1Þ þ

0 0

1 0

 !
Fð2t � 2Þ:

It can be simply observed that the piecewise linear splines

f1ðtÞ ¼
3t � 1 tA½1=3; 2=3Þ

�3t=2þ 2 tA½2=3; 4=3�
0 te½1=3; 4=3�

8><>:
f2ðtÞ ¼

3t=2� 1 tA½2=3; 4=3Þ
�3t þ 5 tA½4=3; 5=3�

0 te½2=3; 5=3�

8><>:
satisfy the above refinement equation, see Fig. 2.
We show that F is locally linearly independent.
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Consider

A0 ¼

0 1 0 0

0 0 0 0

0 0 3=4 1=4

1 0 1=4 3=4

0BBB@
1CCCA; A1 ¼

3=4 1=4 0 1

1=4 3=4 0 0

0 0 0 0

0 0 1 0

0BBB@
1CCCA:

Then the space V has full dimension 4: A simple computation by Maple tells us that
rankA0 ¼ rankA0A1 ¼ 3 and the 2nd rows are zero,
rankA1 ¼ rankA1A0 ¼ 3 and the 3rd rows are zero,

rankA1A
2
0 ¼ A0A

2
1 ¼ 2 and the middle two rows are zero,

rankA2
0 ¼ rankA3

0 ¼ rankA0A1A
2
0 ¼ rankA2

0A
2
1 ¼ 2 with the first two rows

being zero, and

rankA2
1 ¼ rankA3

1 ¼ rankA2
1A

2
0 ¼ rankA1A0A

2
1 ¼ 2 with the last two rows

being zero.
Hence the procedure of [7] stops and it follows that F is l. l. i.

Next we consider the problem whether a l. l. i. refinable function vector can have
components with holes. The answer is positive and we present the following example.

Example 3. Let F ¼ ðf1; f2Þ
T be a nonzero compactly supported solution of the

refinement equation

FðtÞ ¼
1=9 2=3

1=9 1=3

 !
Fð2tÞ þ

1=3 1

1=3 0

 !
Fð2t � 1Þ þ

2=3 0

1=9 0

 !
Fð2t � 2Þ

þ
0 0

1=3 0

 !
Fð2t � 7Þ:

Then F is continuous and l. l. i. Moreover, supp f1 ¼ ½0; 3� and gsuppf2 ¼ ½0; 5� and
f2 possesses a hole of length 1; namely f2ðtÞ ¼ 0 for tAð5=2; 7=2Þ; see Fig. 3.

0.5 1 1.5 2

1

0.5 1 1.5 2

1

Fig. 2. L. l. i. FðtÞ with suppf1 ¼ ½1=3; 4=3� and suppf2 ¼ ½2=3; 5=3�:
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Proof. We first prove continuity of F: The matrix 1
2

P7
k¼0 AðkÞ has the eigenvalues 1

and �5=18: Further, the mask satisfies the sum rule of order 1; namely, ð1; 1ÞðAð0Þ þ
Að2ÞÞ ¼ ð1; 1Þ ¼ ð1; 1ÞðAð1Þ þ Að7ÞÞ: Hence, the ð14� 14Þ-matricesA0 andA1 both

have the eigenvalue 1 with the corresponding left row eigenvector eT
1 :¼ ð1; 1;y; 1Þ:

Moreover, A0 and A1 are column-stochastic matrices, i.e., all entries in A0 and A1

are nonnegative and the sum of entries in each column is 1: Observe that a product of
two column-stochastic matrices is again column-stochastic. A column-stochastic
matrix is called scrambling if each pair of columns of A has positive entries in some
common row. In particular, if A is column-stochastic and has a positive row, then A

is scrambling.

Consider the subspace U of R14;

U :¼ fuAR14 : eT
1 u ¼ 0g:

We apply the following result of Jia and Zhou [16] for stochastic matrices: A column-
stochastic matrix is scrambling if and only if jjAjU jjo1; where jj 	 jj denotes the

maximum column sum norm of a matrix.
Hence continuity of F is already proved if we can find a kAN such that for each k-

tuple ðe1;y; ekÞ; e1;y; ekAf0; 1g; the matrix product Ae1yAek
has a positive row

(see [16, Theorem 1.1]).
A computation by Maple tells us for the matrix products Ae1Ae2Ae3 with ejAf0; 1g:

If ðe1; e2Það1; 1Þ; then the third and fourth rows of the matrix product are positive,
while for ðe1; e2Þ ¼ ð1; 1Þ; even the first four rows of the matrix product are positive.
This shows that all the column-stochastic matrices of the form Ae1Ae2Ae3 are

scrambling. Hence the joint spectral radius rðA0jU ;A1jUÞ is less than 1: Therefore,
the subdivision scheme associated with this mask converges uniformly, and F is
continuous.

Let us now consider the space V ; generated by an eigenvector of 1
2 ðA0 þA1Þ to

the eigenvalue 1;

v0 ¼ ð6294; 50221=15; 12195; 12850=3; 4203; 689; 0; 1049; 0; 2733; 0; 0; 0; 0ÞT :

Then V is spanned by the vectors v0; A0v0; A2
0v0; A1A0v0; A3

0v0; A1A
2
0v0;

A0A1A0v0; A
2
1A0v0 and has dimension 8:

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 3. Locally linearly independent FðtÞ where suppf2 possesses a hole.
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Let B be a ð14� 8Þ-matrix, such that the columns of B form a basis of V : Then B
has 6 zero rows, namely the 7th, 9th, 11th, 12th, 13th and 14th row. Hence,
by Theorem A, F is linearly independent on ð0; 1Þ: Since for continuous F; V

contains UðtÞ ¼ ðFðt þ kÞÞ6k¼0 for tAð0; 1Þ; it follows that gsupp f1 ¼ ½0; 3� and

gsupp f2 ¼ ½0; 5�:
We define the restricted vector *UðtÞ for tA½0; 1Þ as

*UðtÞ ¼ ðf1ðtÞ;f2ðtÞ;f1ðt þ 1Þ;f2ðt þ 1Þ;f1ðt þ 2Þ;

f2ðt þ 2Þ;f2ðt þ 3Þ;f2ðt þ 4ÞÞT :

Then Ṽ ¼ spanf *UðtÞ : tA½0; 1Þg has dimension 8:
Further, let us consider the matrices B0;B1; which are derived from A0;A1 by

restricting to *U; i.e., by deleting the 7th, 9th, 11th, 12th, 13th and 14th rows and
columns of A0;A1;

9B0 ¼

1 6 0 0 0 0 0 0

1 3 0 0 0 0 0 0

6 0 3 9 1 6 0 0

1 0 3 0 1 3 0 0

0 0 0 0 6 0 9 6

0 0 0 0 1 0 0 3

0 0 0 0 0 0 0 0

0 0 3 0 0 0 0 0

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
; 9B1 ¼

3 9 1 6 0 0 0 0

3 0 1 3 0 0 0 0

0 0 6 0 3 9 6 0

0 0 1 0 3 0 3 0

0 0 0 0 0 0 0 9

0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

0 0 0 0 3 0 0 0

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
:

Observe that then (3) is of the form

*Uðt=2Þ ¼ B0
*UðtÞ; *Uððt þ 1Þ=2Þ ¼ B1

*UðtÞ; tA½0; 1Þ:

Now we can chooseB to be the 8� 8 identity matrix and the procedure of Goodman
et al. [7] (with B0;B1 instead of A0;A1) gives

rankB0 ¼ rankB2
0 ¼ rankB0B1 ¼ 7 and the 7th rows are zero;

rankB1 ¼ rankB1B0 ¼ rankB1B1 ¼ 7 and the 6th rows are zero:

Hence, F is l. l. i. Moreover, f2 possesses a hole of length 1; namely f2ðtÞ ¼ 0 for
tAð5=2; 7=2Þ: &

Remark. A similar example of a continuous l. l. i. function vector with one hole can
be found in [20].
However, in certain cases one can show that the components of F cannot have

holes.
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Theorem 2. Let F ¼ ðf1;y;frÞ
T

be a locally linearly independent vector of

compactly supported L1-functions satisfying

FðtÞ ¼
XN

k¼0
AðkÞFð2t � kÞ

for some NAN: Suppose that Að0Þ and AðNÞ contain no zero row. Then

all nonzero components of F have support ½0; N�; and in particular, they have

no holes.

Proof. Deleting zero components of F; we may assume that each component fn of F
is nonzero.
We show first that gsupp fn ¼ ½0;N�; n ¼ 1;y; r:
Let gsupp fn ¼ ½an; bn�: We find from (3) that for each fixed m;

fmðt=2Þ ¼
Xr

n¼1
Am;nð0ÞfnðtÞ þ

XN

k¼1

Xr

n¼1
Am;nðkÞfnðt � kÞ:

Since Að0Þ has no zero rows, at least one of the coefficients Am;nð0Þ is nonzero. On the
interval ð�N; 2amÞ;fmðt=2Þ vanishes. By the local linear independence, for each n
with Am;nð0Þa0 it follows that fnðtÞ ¼ 0 on this interval. Hence anX2am; i.e.,

amp1
2

an: Hence, by local linear independence, for all mAf1;y; rg there exists a n
with 2am � an ¼ 0:

Same arguments as in the proof of Theorem 1 imply that for all am with m in a cycle
fm1;y; mdg; we have am1p

1
2

am2p?p 1
2d amd

p 1
2dþ1 am1 : But am1X0: Then am1 ¼ ? ¼

amd
¼ 0: Further, for each am0 with m0 being not in a cycle, there exists a chain to a

cycle and we find again am0 ¼ 0: Thus, for all components fn of F; gsupp fn starts

at zero.
Analogously, using the assumption that AðNÞ has no zero rows, it follows that

bn ¼ N for all n ¼ 1;y; r:
Now, suppose that some components fn of F have holes (i.e., intervals ða; bÞ

with 0oaoboN; where some fn is identically zero). Then there exist
holes with greatest length. Let us choose a hole with greatest length. With-
out loss of generality we suppose that f1 has such a hole ðc; dÞ with
0ocodoN:
Refinability of F implies that

f1ðtÞ ¼
Xr

n¼1

XN

k¼0
A1;nðkÞfnð2t � kÞ:

On the interval ðc; dÞ;f1ðtÞ ¼ 0: By the local linear independence, for each ðn; kÞ with
A1;nðkÞa0 the corresponding function fn needs to satisfy fnðtÞ ¼ 0 for tAð2c �
k; 2d � kÞ: But gsupp fn ¼ ½0;N� and fn does not have a hole with length 2ðd � cÞ:
Hence either 2c � kXN or 2d � kp0:
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If coN=2; then the above discussion tells us that for each ðn; kÞ with
A1;nðkÞa0; 2d � kp0: It follows that

f1ðtÞ ¼
Xr

n¼1

X
kX2d

A1;nðkÞfnð2t � kÞ:

Then gsupp f1C½d;N�; contradicting the above observation that gsupp f1 ¼ ½0;N�:
In the same way, if cXN=2; then d4N=2; and

f1ðtÞ ¼
Xr

n¼1

X
kp2c�N

A1;nðkÞfnð2t � kÞ:

Then gsupp f1C½0; c�; which is again a contradiction. Therefore, fn cannot have
holes. &

Remark. We want to remark, that for g. l. i. function vectors F it has been shown by
Ruch et al. [22] that,r

n¼1 supp fn ¼ ½0;N� if and only if A0 and AN are not nilpotent.

Recently, Micchelli and Zhou [19] have studied the positivity of scalar refinable
functions with nonnegative masks (inside the supports).

4. Bases of shift-invariant spaces

Let FAðL1ðRÞÞr be a vector of compactly supported functions fn; n ¼ 1;y; r:
Denote by SðFÞ the linear space of all functions of the formXr

n¼1

X
kAZ

cnðkÞfnð	 � kÞ ð5Þ

with arbitrary sequences cn : Z-R: The space SðFÞ is a finitely generated shift-
invariant space (FSI-space). The components fn of F are called generators of SðFÞ:
Further, let S0ðFÞ be the linear span of ffnð	 � lÞ : n ¼ 1;yr; lAZg; i.e., S0ðFÞ
contains only finite linear combinations of fnð	 � lÞ:
We want to deal with the following problem: Does an FSI-space SðFÞ possess a

linearly independent basis over ð0; 1Þ ?
Our considerations are based on the following.

Theorem B. (Jia [12]). Let F ¼ ðf1;y;frÞ
T

be a vector of compactly supported

distributions on R: Then there exists a distribution vector C ¼ ðc1;y;csÞ
T

with the

following properties:

(a) C is globally linearly independent.

(b) FCS0ðCÞ; i.e., all components fn of F are finite linear combinations of integer

translates of c1;y;cs:
(c) spr:
(d) SðFÞ ¼ SðCÞ: Furthermore, if FAðL1ðRÞÞr; then C can be chosen with

CAðL1ðRÞÞs:
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In particular, each FSI-space SðFÞ possesses a globally linearly independent basis.
This assertion is true even without assuming refinability of the vector F: Can we
obtain a stronger result as formulated above? Unfortunately not, we obtain

Counterexample 1. Let F ¼ ðf1;f2Þ
T with f1 the normalized linear cardinal B-

spline with support ½0; 2� (hat function) satisfying

f1ðtÞ ¼
1

2
f1ð2tÞ þ f1ð2t � 1Þ þ 1

2
f1ð2t � 2Þ

and with f2 satisfying the refinement equation

f2ðtÞ ¼
1

2
f2ð2tÞ þ 1

2
f1ð2t � 6Þ þ f1ð2t � 9Þ:

Then F is a refinable vector of compactly supported, continuous functions and
the FSI-space SðFÞ does not possess a linearly independent basis over ð0; 1Þ; see
Fig. 4.

Proof. We observe that suppf2C½0; 11=2�: The ð12� 12Þ-matrices A0 and A1 can
be simply derived from the refinement equations.

Let UðtÞ :¼ ðFðtÞT ;Fðt þ 1ÞT ;y;Fðt þ 5ÞTÞTAR12: Then from (3) one obtains
that the space V ¼ VF :¼ fUðtÞ : tA½0; 1Þg is spanned by

Uð0Þ ¼ ð0; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 1ÞT ;

Uð1=2Þ ¼ ð1=2; 0; 1=2; 0; 0; 1=2; 0; 1=2; 0; 0; 0; 0ÞT ;

Uð1=4Þ ¼ ð1=4; 0; 3=4; 1=4; 0; 0; 0; 1=4; 0; 0; 0; 1=2ÞT ;

Uð3=4Þ ¼ ð3=4; 0; 1=4; 1=4; 0; 0; 0; 1=4; 0; 1=2; 0; 0ÞT ;

Uð3=8Þ ¼ ð3=8; 0; 5=8; 0; 0; 1=4; 0; 3=8; 0; 0; 0; 1=4ÞT ;

Uð5=8Þ ¼ ð5=8; 1=8; 3=8; 1=8; 0; 1=4; 0; 3=8; 0; 1=4; 0; 0ÞT :

The orthogonal complement W of V is spanned by the unit vectors e5; e7; e9; e11 and

further by the vectors w1 ¼ ð0; 0;�1; 0; 0; 0; 0; 1; 0; 0; 0; 1ÞT and w2 ¼ ð�1; 0; 0; 0; 0; 0;
0; 1; 0; 1; 0; 0ÞT :Here, a unit vector ej is defined by ej ¼ ðdj;kÞ12k¼1 with d the Kronecker

2 4 6 8

0.2

0.4

0.6

0.8

1

2 4 6 8

0.2

0.4

0.6

0.8

1

Fig. 4. FðtÞ generating no linearly independent basis over ð0; 1Þ of SðFÞ:
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symbol. The unit vectors in W are due to the support of f1 (being ½0; 2� only). The
vectors w1;w2 imply the local dependencies

� f1ðtÞ þ f2ðt þ 3Þ þ f2ðt þ 4Þ ¼ 0;

� f1ðt þ 1Þ þ f2ðt þ 3Þ þ f2ðt þ 5Þ ¼ 0

for tAð0; 1Þ; i.e., F is linearly dependent over ð0; 1Þ:
However, it can be simply observed that F is globally linearly independent, since

W does not contain any vector of the form

ðc0; c1; c0r; c1r; c0r2; c1r2; c0r3; c1r3; c0r4; c1r4; c0r5; c1r5ÞT

with constants c0; c1; r (cf. [14, Theorem 3.3]).
We now prove, that there exists no basis of SðFÞ being linearly independent over

ð0; 1Þ by showing that the assumption that such a basis exists leads to a
contradiction.
Suppose that there exists a refinable function vector C ¼ ðc1;c2Þ with SðCÞ ¼

SðFÞ and with C being linearly independent over ð0; 1Þ: Then there exists a finite
linear combination

f1ðtÞ ¼
X
kAZ

ðakc1ðt � kÞ þ bkc2ðt � kÞÞ; ak; bkAR:

Since supp f1 ¼ ½0; 2� it follows from the linear independence of C over ð0; 1Þ
that ak ¼ 0 if supp c1ð	 � kÞD/ ½0; 2� and bk ¼ 0 if supp c2ð	 � kÞD/ ½0; 2�: Hence, at
least one of the functions c1;c2 has support contained in ½0; 2�: Let us suppose
that supp c1D½0; 2�: Since SðFÞ ¼ SðCÞ; it follows that VF and VC have the
same dimension 6; thus the length of supp c2 must be greater than 2 and
we have

f1ðtÞ ¼
X
kAZ

akc1ðt � kÞ:

Considering the Fourier transforms bFF ¼ ðbff1;
bff2Þ

T and bCC ¼ ðbcc1;
bcc2Þ

T ; we hence find

bFFðuÞ ¼ g1ðe�iuÞ 0

g3ðe�iuÞ g4ðe�iuÞ

 !bCCðuÞ

with appropriate algebraic Laurent polynomials g1; g3; g4: Since both F and C are
globally linearly independent, it follows that the transformation matrix is invertible
for all uAC; and g1ðzÞ; g4ðzÞ have no zeros in C\f0g (see [14]). But this is only true if
g1ðzÞ ¼ zj1 ; g4ðzÞ ¼ zj2 for some integers j1; j2:
Without loss of generality, we can assume that supp c1 and supp c2 start in ½0; 1Þ:

Hence f1ðtÞ ¼ a0c1ðtÞ; i.e., c1 is the hat function. Further, according to g4ðzÞ ¼ zj2

and to the assumed linear independence of C; f2 satisfies

f2ðtÞ ¼
X4
k¼0

ckc1ðt � kÞ þ dj2c2ðt � j2Þ; ck; dj2AR
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such that supp c2ð	 � j2ÞD½0; 6�: Now, the structure of f2 implies that j2 ¼ 0; since
f2ðtÞ; tA½0; 1Þ; cannot be represented by the hat function c1ðtÞ: Hence the
dependence relation �f1ðtÞ þ f2ðt þ 3Þ þ f2ðt þ 4Þ ¼ 0 for tAð0; 1Þ causes

� a0c1ðtÞ þ ðd0c2ðt þ 3Þ þ c2c1ðt þ 1Þ þ c3c1ðtÞÞ

þ ðd0c2ðt þ 4Þ þ c3c1ðt þ 1Þ þ c4c1ðtÞÞ ¼ 0

for tAð0; 1Þ; i.e., C is not linearly independent over ð0; 1Þ and we have found the
desired contradiction. &

Finally, let us consider the following question: Let F be a refinable vector of

compactly supported L1-functions. If F is globally linearly independent, is there a
finite interval ðt1; t2Þ; t1; t2AR; such that F is linearly independent over ðt1; t2Þ?
We find the following.

Counterexample 2. Let F ¼ ðf1;f2Þ
T with f1ðtÞ ¼ w½0;1ÞðtÞ; where w½0;1Þ denotes the

characteristic function on ½0; 1Þ; and with

f2ðtÞ ¼
XN
j¼1

1

2j�1 ðw½0;1Þð2
j t � 2Þ þ w½0;1Þð2j t � 3ÞÞ:

Then F is a refinable, globally linearly independent vector of compactly supported

L1-functions being linearly dependent over any finite interval ðt1; t2Þ; t1; t2AR; see
Fig. 5.

Proof. The vector F is refinable with

f1ðtÞ ¼ f1ð2tÞ þ f1ð2t � 1Þ;

f2ðtÞ ¼
1

2
f2ð2tÞ þ f1ð2t � 2Þ þ f1ð2t � 3Þ:

Further, we find supp f1 ¼ ½0; 1� and supp f2 ¼ ½0; 2�:
We first show that F is globally linearly independent. Let a; b be sequences such

that X
kAZ

ðaðkÞf1ðt � kÞ þ bðkÞf2ðt � kÞÞ ¼ 0 for all tAR: ð6Þ
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Fig. 5. FðtÞ being g. l. i. but not linearly dependent on any interval ðt1; t2Þ:
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Suppose first that one component of b is nonzero, say bðlÞa0 for a fixed lAZ:
Considering (6) for tAðl; l þ 1Þ; we obtain (according to the support of f1;f2)

aðlÞf1ðt � lÞ þ bðlÞf2ðt � lÞ þ bðl � 1Þf2ðt � l þ 1Þ ¼ 0

and by definition of f1 and f2 hence

aðlÞ þ bðlÞf2ðt � lÞ þ bðl � 1Þ ¼ 0;

since f1ðt � lÞ and f2ðt � l þ 1Þ are identically 1 for tAðl; l þ 1Þ: However, f2ðt � lÞ
can take all values 1=2n; n ¼ 1; 2;y . Hence the above equation can only be satisfied
if bðlÞ ¼ 0; contradicting our assumption. Thus, b is a zero sequence. But now, (6)
simply implies that also a must be a zero sequence, i.e., F is globally linearly
independent.
However, F is linearly dependent over every finite interval ðt1; t2ÞCR; since we

find

�f1ðt � N1Þ þ f2ðt � N1 þ 1Þ ¼ 0 for all tAðt1; t2Þ;

where N1 is the greatest integer less than t1: &
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