Properties of locally linearly independent refinable function vectors

G. Plonka ${ }^{\mathrm{a}, *}$ and D.-X. Zhou ${ }^{\mathrm{b}, 1}$
${ }^{a}$ Institut für Mathematik, Universität Duisburg, D-47048 Duisburg, Germany
${ }^{\mathrm{b}}$ Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong

Received 18 April 2002; accepted 29 January 2003
Communicated by Zuowei Shen

Abstract

The paper considers properties of compactly supported, locally linearly independent refinable function vectors $\Phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{T}, r \in \mathbb{N}$. In the first part of the paper, we show that the interval endpoints of the global support of $\phi_{v}, v=1, \ldots, r$, are special rational numbers. Moreover, in contrast with the scalar case $r=1$, we show that components ϕ_{v} of a locally linearly independent refinable function vector Φ can have holes. In the second part of the paper we investigate the problem whether any shift-invariant space generated by a refinable function vector Φ possesses a basis which is linearly independent over $(0,1)$. We show that this is not the case. Hence the result of Jia, that each finitely generated shift-invariant space possesses a globally linearly independent basis, is in a certain sense the strongest result which can be obtained.

(C) 2003 Elsevier Science (USA). All rights reserved.

Keywords: Refinable function vectors; Local linear independence; Global linear independence; Support of refinable functions

1. Introduction

In this paper, we are especially interested in properties of refinable function vectors which are locally linearly independent.

[^0]Let $\Phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{T}, r \in \mathbb{N}, r \geqslant 1$, be a vector of compactly supported integrable functions on \mathbb{R}. A function vector Φ is said to be refinable if it satisfies a refinement equation

$$
\begin{equation*}
\Phi(t)=\sum_{k \in \mathbb{Z}} A(k) \Phi(2 t-k), \quad t \in \mathbb{R}, \tag{1}
\end{equation*}
$$

where $\{A(k)\}$ is a finitely supported sequence of $(r \times r)$-matrices.
We say that Φ is linearly independent over a nonempty open subset G of \mathbb{R}, if for any sequences c_{1}, \ldots, c_{r} on \mathbb{Z},

$$
\sum_{v=1}^{r} \sum_{k \in \mathbb{Z}} c_{v}(k) \phi_{v}(\cdot-k)=0 \quad \text { on } G
$$

implies that $c_{v}(k)=0$ for all $k \in I_{v}(G), v=1, \ldots, r$, where $I_{v}(G)$ contains all $k \in \mathbb{Z}$ with $\phi_{v}(\cdot-k) \not \equiv 0$ on G. Further, Φ is locally linearly independent (1.1.i.) if it is linearly independent over any nonempty open subset G of \mathbb{R}.

We say that Φ is globally linearly independent (g.l. i.) if, for any sequences c_{1}, \ldots, c_{r} on \mathbb{Z},

$$
\sum_{v=1}^{r} \sum_{k \in \mathbb{Z}} c_{v}(k) \phi_{v}(\cdot-k)=0 \quad \text { on } \mathbb{R}
$$

implies that $c_{v}(k)=0$ for all $v=1, \ldots, r$ and all $k \in \mathbb{Z}$, see [13].
The concept of local linear independence has been intensively studied in spline approximation (see e.g. $[4,11,23]$). In wavelet analysis the notions of global and local linear independence have been used as a tool for wavelet approximation and for construction of wavelets on the interval (see e.g. [5,12,17,18]).

For $r=1$, the refinement equation (1) is of the form

$$
\begin{equation*}
\phi(x)=\sum_{k=a}^{b} A(k) \phi(2 t-k), \quad a, b \in \mathbb{Z} \tag{2}
\end{equation*}
$$

In this case, it was shown by Lemarié [17] that the global linear independence is equivalent to the local linear independence on the unit interval $(0,1)$. Sun [25] stated that local and global linear independence are equivalent for a function ϕ satisfying (2).

Let the global support of an integrable function $f, \operatorname{gsupp} f$, be the smallest interval $I \subset \mathbb{R}$ with supp $f \subseteq I$. Then for a 1.1.i. function ϕ satisfying (2) it follows that $\operatorname{supp} \phi=\operatorname{gsupp} \phi=[a, b]$ if $A(a), A(b) \neq 0$, i.e., ϕ has integer support. Moreover, ϕ cannot have a hole, i.e., there is no interval of Lebesgue measure greater than zero lying inside the global support of ϕ where ϕ vanishes. Further, the integer translates of a 1.1.i. function ϕ satisfy the minimality property, i.e., for every compactly supported ψ being a linear combination of integer translates of ϕ it follows that gsupp $\psi \supseteq \operatorname{gsupp} \phi(\cdot-k)$ for some $k \in \mathbb{Z}$, and equality holds if and only if $\psi=$ $c \phi(\cdot-k)$ for some constant $c \neq 0$ (see $[3,21])$.

For compactly supported refinable function vectors Φ, global and local linear independence are no longer equivalent (see [7]).

The two properties, local as well as global linear independence can be completely characterized by the matrix mask $\{A(k)\}$ of Φ, see e.g. [1,6,9,16,26] for the univariate vector case, [10] for multivariate scaling functions and [7] for the multivariate vector case.

In this paper, we study the support properties of 1.1. i. function vectors. While for a single refinable 1.1. i. function ϕ we have the above-mentioned useful properties, little is known for the vector case. Estimates and computations of the global support of refinable function vectors Φ have been given by Heil and Collela [8], Ruch et al. [22,24] and by Plonka [20].

We shall answer the following questions in the first part of the paper: What does the global support of the components for 1.1.i. function vectors look like? Can components of a 1.1.i. refinable function vector Φ have holes? Is a g.1.i. function vector also linearly independent over a finite interval?

In the second part of the paper, we study bases of shift-invariant spaces. As shown by Jia [12], any finitely generated shift-invariant space possesses a globally linearly independent basis (see Theorem B in Section 4). One can ask the question, whether this result can be strengthened in the following direction: Does any shift-invariant space generated by a refinable function vector Φ have a basis which is linearly independent over $(0,1)$? Unfortunately this is not the case. Hence, the result of Jia is in this sense the strongest result which can be obtained.

The paper is organized as follows. In Section 2, we briefly recall the characterization of local linear independence of Φ in terms of the mask. In Section 3, we study support properties of 1.1.i. function vectors. In particular, we show that the global supports of the components $\phi_{v}, v=1, \ldots, r$, of Φ start and end with special rational numbers. We present a compactly supported, continuous, refinable function vector, which is 1.1.i. but has a component possessing a hole in its global support. We also show that, if Φ satisfies (1) with $A(k)=0$ for $k<0$ and $k>N$, and if $A(0)$ and $A(N)$ do not contain zero rows, then the components of Φ have no holes.

Finally, in Section 4, we present an example of a refinable function vector which is g. 1.i. but not linearly independent over $(0,1)$, and where the shift-invariant space generated by Φ does not possess a basis being linearly independent over (0,1). Moreover, we show that there are refinable function vectors being g.l.i. but linearly dependent over any finite interval.

2. Characterization of local linear independence

Let us briefly recall the characterization of local linear independence from Goodman et al. [7] and Cheung et al. [2].

We assume that the mask $\{A(k)\}$ is supported on $[0, N]$, i.e., for $k<0$ and $k>N$ the $(r \times r)$-matrices $A(k)$ are zero matrices. Let

$$
\boldsymbol{\Phi}(t):=(\Phi(t+k))_{k=0}^{N-1} \quad \text { for } t \in[0,1)
$$

Then, for each $t \in[0,1), \boldsymbol{\Phi}(t)$ is a vector of length $r N$. With the help of the twoslanted block matrices

$$
\mathscr{A}_{0}:=(A(2 k-l))_{k, l=0}^{N-1}, \quad \mathscr{A}_{1}:=(A(2 k-l+1))_{k, l=0}^{N-1}
$$

the refinement equation (1) implies

$$
\begin{equation*}
\boldsymbol{\Phi}\left(\frac{t}{2}\right)=\mathscr{A}_{0} \boldsymbol{\Phi}(t) \quad \text { and } \quad \boldsymbol{\Phi}\left(\frac{t+1}{2}\right)=\mathscr{A}_{1} \boldsymbol{\Phi}(t) \tag{3}
\end{equation*}
$$

for $t \in[0,1)$. It follows that for $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{0,1\}$, we have

$$
\boldsymbol{\Phi}\left(\frac{\varepsilon_{1}}{2}+\cdots+\frac{\varepsilon_{n}}{2^{n}}+\frac{t}{2^{n}}\right)=\mathscr{A}_{\varepsilon_{1}} \ldots \mathscr{A}_{\varepsilon_{n}} \boldsymbol{\Phi}(t) \quad t \in[0,1)
$$

Suppose that $\Phi \in\left(L_{1}(\mathbb{R})\right)^{r}$ is a nontrivial compactly supported solution of (1) (with $A(k)=0$ for $k<0$ and $k>N)$. Let

$$
v_{0}:=\int_{0}^{1} \boldsymbol{\Phi}(t) d t=\left(\int_{0}^{1} \Phi(t+k) \mathrm{d} t\right)_{k=0}^{N-1} \in \mathbb{R}^{r N}
$$

Then v_{0} is a right eigenvector of $\frac{1}{2}\left(\mathscr{A}_{0}+\mathscr{A}_{1}\right)$ to the eigenvalue 1 ([2, Lemma 3.1]). Now, let V be the minimal common invariant subspace of $\left\{\mathscr{A}_{0}, \mathscr{A}_{1}\right\}$ generated by v_{0}. Further, let $\mathscr{B}=(\mathscr{B}(k, l))$ be an $(r N \times \operatorname{dim} V)$-matrix such that the columns of \mathscr{B} form a basis of V. For continuous functions, instead of v_{0} we can also choose a right eigenvector v of \mathscr{A}_{0} to the eigenvalue 1 in order to generate the space V. In this case, V contains the vectors $\boldsymbol{\Phi}(t)$ with $t \in[0,1)$, since for each t there is a sequence of dyadic numbers with the limit t. We have:

Theorem A. (Cheung et al. [2], Goodman et al. [7]). Let Φ be a compactly supported, integrable solution vector of (1) with $A(k)=0$ for $k<0$ and $k>N$. Then we have
(1) Φ is linearly independent over $(0,1)$ if and only if the nonzero rows of \mathscr{B} are linearly independent.
(2) Φ is locally linearly independent if and only if for all n with $0 \leqslant n \leqslant 2^{r N}$ and all $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{0,1\}$ the nonzero rows of $\mathscr{A}_{\varepsilon_{1}} \ldots \mathscr{A}_{\varepsilon_{n}} \mathscr{B}$ are linearly independent.

In [7], a procedure is presented which simplifies the application of Theorem A in order to investigate, if Φ is locally linearly independent or not.

3. Supports of locally linearly independent refinable vectors

As known, for 1.1.i. refinable functions ϕ satisfying (2), it follows that supp $\phi=$ $[a, b]$, and in particular, ϕ has no holes (see [17]). Now we want to consider the support properties of 1.1. i. function vectors in more detail.

First, the local linear independence implies the following restrictions on the starting point and endpoint of the global supports of the components $\phi_{v}, v=1, \ldots, r$, of the refinable function vector Φ.

Theorem 1. Let $\Phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{T}, r \in \mathbb{N}, r \geqslant 1$, be a refinable, locally linearly independent vector of compactly supported functions $\phi_{v} \in L^{1}(\mathbb{R})$. Then the starting point and the endpoint of gsupp $\phi_{v}, v=1, \ldots, r$, is a rational number of the form $k+c_{r}$, where $k \in \mathbb{Z}$ and $c_{r} \in J_{r}$ with

$$
J_{r}:=\left\{\frac{m}{\left(2^{l}-1\right) 2^{r-l}}: l=1, \ldots, r, m=0, \ldots,\left(2^{l}-1\right) 2^{r-l}-1\right\}
$$

In particular,

$$
\begin{aligned}
& J_{1}=\{0\}, \quad J_{2}=\left\{0, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}\right\}, \\
& J_{3}=\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \frac{1}{6}, \frac{1}{3}, \frac{2}{3}, \frac{5}{6}, \frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}\right\} .
\end{aligned}
$$

Proof. Let $\Phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{T}$ with gsupp $\phi_{v}=\left[a_{v}, b_{v}\right]$. We can assume that all starting points lie in $[0,1)$, this is obtained by shifting the components of Φ without changing the local linear independence. Since the components of Φ are compactly supported and Φ is 1.1. i. and refinable, the refinement mask of Φ is finite, i.e., there exist $a, b \in \mathbb{Z}$ with

$$
\Phi(t)=\sum_{k=a}^{b} A(k) \Phi(2 t-k), \quad t \in \mathbb{R}
$$

with $(r \times r)$-matrices $A(k)=\left(A_{\mu, v}(k)\right)_{\mu, v=1}^{r}$. Further, for $t \in \mathbb{R} \backslash\left[a_{\mu}, b_{\mu}\right]$ we have

$$
\phi_{\mu}(t)=0=\sum_{k=a}^{b} \sum_{v=1}^{r} A_{\mu, v}(k) \phi_{v}(2 t-k)
$$

and the local linear independence of Φ implies that for all k with $A_{\mu, v}(k) \neq 0$,

$$
\operatorname{gsupp} \phi_{v}(2 \cdot-k) \subseteq \operatorname{gsupp} \phi_{\mu}, \quad \mu, v=1, \ldots, r .
$$

Hence

$$
\left[\frac{a_{v}}{2}+\frac{k}{2}, \frac{b_{v}}{2}+\frac{k}{2}\right] \subseteq\left[a_{\mu}, b_{\mu}\right],
$$

such that the starting points (and endpoints) satisfy $k \geqslant 2 a_{\mu}-a_{v}$ (and $k \leqslant 2 b_{\mu}-b_{v}$) for all k with $A_{\mu, v}(k) \neq 0$. Moreover, for each fixed μ, one of the r inequalities for the starting points (and for the endpoints, respectively) must be an equality. Hence, for each fixed μ, there exists at least one $v \in\{1, \ldots, r\}$ with $2 a_{\mu}-a_{v} \in \mathbb{Z}$ (and one $\tilde{v} \in\{1, \ldots, r\}$ with $\left.2 b_{\mu}-b_{\tilde{v}} \in \mathbb{Z}\right)$.

We now consider the starting points more precisely. Since $0 \leqslant a_{v}<1$ for $v=$ $1, \ldots, r$, we have (at least) r relations of the form

$$
2 a_{\mu}-a_{v(\mu)} \in\{0,1\}, \quad \mu=1, \ldots, r, \quad v(\mu) \in\{1, \ldots, r\},
$$

and we can find a cycle $\left\{\mu_{1}, \ldots, \mu_{d}\right\}, d \leqslant r$, such that

$$
\begin{equation*}
2 a_{\mu_{j}}-a_{\mu_{j+1}} \in\{0,1\}, \quad j=1, \ldots, d-1, \quad 2 a_{\mu_{d}}-a_{\mu_{1}} \in\{0,1\} . \tag{4}
\end{equation*}
$$

Considering the circulant $d \times d$ matrix

$$
\operatorname{circ}\left(x_{0}, x_{1}, \ldots, x_{d-1}\right):=\left(\begin{array}{ccccc}
x_{0} & x_{d-1} & x_{d-2} & \ldots & x_{1} \\
x_{1} & x_{0} & x_{d-1} & \ldots & x_{2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
x_{d-2} & x_{d-3} & \ddots & \ddots & x_{d-1} \\
x_{d-1} & x_{d-2} & \ldots & x_{1} & x_{0}
\end{array}\right)
$$

we obtain from (4) a system of linear equations

$$
\operatorname{circ}(2,0, \ldots, 0,-1) \mathbf{a}=\mathbf{e}
$$

where $\mathbf{a}:=\left(a_{\mu_{1}}, \ldots, a_{\mu_{d}}\right)^{T}$ is the vector of starting points and \mathbf{e} is an integer vector $\left(\delta_{1}, \ldots, \delta_{d}\right)^{T}$ with $\delta_{j} \in\{0,1\}$. Hence, with

$$
(\operatorname{circ}(2,0, \ldots, 0,-1))^{-1}=\frac{1}{2^{d}-1} \operatorname{circ}\left(2^{d-1}, 1,2, \ldots, 2^{d-2}\right)
$$

we find

$$
\mathbf{a}=\frac{1}{2^{d}-1} \operatorname{circ}\left(2^{d-1}, 1,2, \ldots, 2^{d-2}\right) \mathbf{e}
$$

Observe that at least one component $\delta_{v}(v=1, \ldots, d)$ must be zero since $a_{\mu_{1}}, \ldots, a_{\mu_{d}} \in[0,1)$. It follows that each $a_{\mu_{j}}$ must be a rational number of the form $\frac{m}{2^{d}-1}, m \in\left\{0, \ldots, 2^{d}-2\right\}$.

Further, for each $a_{\mu^{\prime}}$ with μ^{\prime} not belonging to a cycle, there exists a chain $\left\{\mu_{1}^{\prime}, \ldots, \mu_{g}^{\prime}\right\}$ with $\mu_{1}^{\prime}=\mu^{\prime}$,

$$
2 a_{\mu_{j}^{\prime}}-a_{\mu_{j+1}^{\prime}} \in\{0,1\} \quad \text { for } j=1, \ldots, g-1
$$

and μ_{g}^{\prime} belongs to a cycle, but μ_{g-1}^{\prime} does not. Hence, $a_{\mu_{g}^{\prime}}=\frac{m}{2^{d}-1}<1$ for some $d<r$ and some $m \in\left\{0, \ldots, 2^{d}-2\right\}$ and

$$
a_{\mu_{j}^{\prime}}=\frac{m^{\prime}}{\left(2^{d}-1\right) 2^{g-j}}<1
$$

with some $m^{\prime} \in\left\{0, \ldots,\left(2^{d}-1\right) 2^{g-j}-1\right\}$, where m^{\prime} depends on m and the number of equations of the form $2 a_{\mu_{j}^{\prime}}-a_{\mu_{j+1}^{\prime}}=1$ in the chain.

Observing that $d+g-1 \leqslant r$, we find $a_{\mu^{\prime}}=\frac{m^{\prime}}{\left(2^{d}-1\right) 2^{g-1}} \in J_{r}$.
For the endpoints of the global support of ϕ_{v}, the proof follows analogously.
While the support conditions in Theorem 1 are necessary consequences of the local linear independence of Φ, there may not exist refinable, 1.1. i. function vectors with such exotic support intervals. However, for $r=2$ we can show in the following examples, that indeed, all starting points and endpoints in J_{2} can occur.

Example 1. Let $\Phi=\left(\phi_{1}, \phi_{2}\right)^{T}$ be a nonzero solution of the refinement equation

$$
\begin{aligned}
\Phi(t)= & \left(\begin{array}{cc}
0 & 0 \\
4 / 5 & 3 / 5
\end{array}\right) \Phi(2 t)+\left(\begin{array}{ll}
1 / 2 & 1 / 4 \\
1 / 3 & 5 / 6
\end{array}\right) \Phi(2 t-1) \\
& +\left(\begin{array}{cc}
-1 / 5 & 3 / 5 \\
0 & 0
\end{array}\right) \Phi(2 t-2) .
\end{aligned}
$$

Then Φ is continuous, locally linearly independent, and $\operatorname{supp} \phi_{1}=[1 / 2,2]$, $\operatorname{supp} \phi_{2}=[0,3 / 2]$, see Fig. 1 .

Proof. We have

$$
\mathscr{A}_{0}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
4 / 5 & 3 / 5 & 0 & 0 \\
-1 / 5 & 3 / 5 & 1 / 2 & 1 / 4 \\
0 & 0 & 1 / 3 & 5 / 6
\end{array}\right), \quad \mathscr{A}_{1}=\left(\begin{array}{cccc}
1 / 2 & 1 / 4 & 0 & 0 \\
1 / 3 & 5 / 6 & 4 / 5 & 3 / 5 \\
0 & 0 & -1 / 5 & 3 / 5 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

In order to show continuity of ϕ_{1} and ϕ_{2}, we apply the following result of Jia et al. [15]. Let $\{A(k)\}_{k=0}^{N}$ be a finite refinement mask satisfying that $\frac{1}{2} \sum_{k=0}^{N} A(k)$ has one simple eigenvalue 1 and all other eigenvalues lie inside the unit circle. Then the subdivision scheme associated with A converges uniformly if and only if
(a) The mask $\{A(k)\}_{k=0}^{N}$ satisfies the sum rule of order 1, i.e., the matrices \mathscr{A}_{0} and \mathscr{A}_{1} both have the eigenvalue 1 , and there exists a vector $e_{1} \in \mathbb{R}^{r N}$ with $e_{1}^{T} \mathscr{A}_{0}=$ $e_{1}^{T} \mathscr{A}_{1}=e_{1}^{T}$.
(b) Considering the subspace $U:=\left\{u \in \mathbb{R}^{r N}: e_{1}^{T} u=0\right\}$ the joint spectral radius of $\left.\mathscr{A}_{0}\right|_{U}$ and $\left.\mathscr{A}_{1}\right|_{U}$ satisfies

$$
\rho\left(\left.\mathscr{A}_{0}\right|_{U},\left.\mathscr{A}_{1}\right|_{U}\right)<1 .
$$

Observe that the joint spectral radius is given by

$$
\rho\left(\left.\mathscr{A}_{0}\right|_{U},\left.\mathscr{A}_{1}\right|_{U}\right)=\inf _{n \geqslant 1}\left(\max \left\{\left\|\left.\left.\mathscr{A}_{\varepsilon_{1}}\right|_{U} \ldots \mathscr{A}_{\varepsilon_{n}}\right|_{U}\right\|: \varepsilon_{i} \in\{0,1\}, i=1, \ldots, n\right\}\right)^{1 / n}
$$

with an arbitrary matrix norm in $\mathbb{R}^{r N}$.

Fig. 1. L. 1. i. $\Phi(t)$ with $\operatorname{supp} \phi_{1}=\left[\frac{1}{2}, 2\right]$ and $\operatorname{supp} \phi_{2}=\left[0, \frac{3}{2}\right]$.

In our example, the matrix $\frac{1}{2} \sum_{k=0}^{2} A(k)$ has the eigenvalues 1 and $-2 / 15$. Further, the mask satisfies the sum rule of order 1 with $e_{1}=(2,3,2,3)^{T}$. Consider the subspace

$$
U:=\left\{u=\left(u_{1}, u_{2}, u_{3}, u_{4}\right)^{T} \in \mathbb{R}^{4}: 2 u_{1}+3 u_{2}+2 u_{2}+3 u_{4}=0\right\} .
$$

We choose a basis of U as $u_{1}=(0,64 / 5,84 / 5,-24)^{T}, u_{2}:=(21,0,0,-14)^{T}$ and $u_{3}:=(-15,42,-48,0)^{T}$. Then the matrix representations of $\left.\mathscr{A}_{0}\right|_{U}$ and $\left.\mathscr{A}_{1}\right|_{U}$ under this basis are

$$
\left(\begin{array}{ccc}
3 / 5 & 161 / 440 & 27 / 44 \\
0 & 34 / 165 & 1 / 11 \\
0 & 238 / 825 & 7 / 55
\end{array}\right), \quad\left(\begin{array}{ccc}
-7 / 33 & -7 / 22 & 0 \\
4 / 11 & 6 / 11 & 0 \\
244 / 825 & 7 / 110 & -1 / 5
\end{array}\right)
$$

The maximum column sum norms of these two matrices are less than 1 , hence the joint spectral radius is less than 1 . Thus, the subdivision scheme associated with this mask converges uniformly and the solution Φ is continuous.

Now we prove that Φ is 1.1.i. The space V, as defined in Section 2, is spanned by the right eigenvector v_{0} of $\frac{1}{2}\left(\mathscr{A}_{0}+\mathscr{A}_{1}\right)$ to the eigenvalue 1 , $v_{0}=(3 / 2,9,7 / 2,1)^{T}$, and $\mathscr{A}_{1} v_{0}, \mathscr{A}_{0}^{2} v_{0}, \mathscr{A}_{1} \mathscr{A}_{0} v_{0}$, i.e., V has full dimension 4. Thus, by Theorem A, Φ is linearly independent over $(0,1)$ and the matrix B can be chosen as the (4×4)-identity matrix.

Now, we have rank $\mathscr{A}_{0}=\operatorname{rank} \mathscr{A}_{1}=3$ and \mathscr{A}_{0} has a zero row at the top and \mathscr{A}_{1} has a zero row at the bottom. Further, $\mathscr{A}_{0} \mathscr{A}_{0}, \mathscr{A}_{0} \mathscr{A}_{1}, \mathscr{A}_{1} \mathscr{A}_{0}, \mathscr{A}_{1} \mathscr{A}_{1}$, all have rank 3 and $\mathscr{A}_{0} \mathscr{A}_{0}, \mathscr{A}_{0} \mathscr{A}_{1}$ have one zero row at the top, and $\mathscr{A}_{1} \mathscr{A}_{0}, \mathscr{A}_{1} \mathscr{A}_{1}$ a zero row at the bottom. Using the procedure proposed in [7], it already follows that Φ is 1.1.i. Moreover, the structure of $A(0)$ and $A(2)$ implies that $\operatorname{supp} \phi_{1}=\left[\frac{1}{2}, 2\right]$ and $\operatorname{supp} \phi_{2}=\left[0, \frac{3}{2}\right]$.

Example 2. (cf. Goodman and Lee [6]). Consider $\Phi=\left(\phi_{1}, \phi_{2}\right)^{T}$ with

$$
\Phi(t)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \Phi(2 t)+\left(\begin{array}{ll}
3 / 4 & 1 / 4 \\
1 / 4 & 3 / 4
\end{array}\right) \Phi(2 t-1)+\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \Phi(2 t-2)
$$

It can be simply observed that the piecewise linear splines

$$
\begin{aligned}
& \phi_{1}(t)=\left\{\begin{array}{cc}
3 t-1 & t \in[1 / 3,2 / 3) \\
-3 t / 2+2 & t \in[2 / 3,4 / 3] \\
0 & t \notin[1 / 3,4 / 3]
\end{array}\right. \\
& \phi_{2}(t)=\left\{\begin{array}{cc}
3 t / 2-1 & t \in[2 / 3,4 / 3) \\
-3 t+5 & t \in[4 / 3,5 / 3] \\
0 & t \notin[2 / 3,5 / 3]
\end{array}\right.
\end{aligned}
$$

satisfy the above refinement equation, see Fig. 2.
We show that Φ is locally linearly independent.

Fig. 2. L. 1.i. $\Phi(t)$ with $\operatorname{supp} \phi_{1}=[1 / 3,4 / 3]$ and $\operatorname{supp} \phi_{2}=[2 / 3,5 / 3]$.

Consider

$$
\mathscr{A}_{0}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 3 / 4 & 1 / 4 \\
1 & 0 & 1 / 4 & 3 / 4
\end{array}\right), \quad \mathscr{A}_{1}=\left(\begin{array}{cccc}
3 / 4 & 1 / 4 & 0 & 1 \\
1 / 4 & 3 / 4 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

Then the space V has full dimension 4. A simple computation by Maple tells us that rank $\mathscr{A}_{0}=\operatorname{rank} \mathscr{A}_{0} \mathscr{A}_{1}=3$ and the 2 nd rows are zero,
rank $\mathscr{A}_{1}=\operatorname{rank} \mathscr{A}_{1} \mathscr{A}_{0}=3$ and the 3rd rows are zero, $\operatorname{rank} \mathscr{A}_{1} \mathscr{A}_{0}^{2}=\mathscr{A}_{0} \mathscr{A}_{1}^{2}=2$ and the middle two rows are zero,
$\operatorname{rank} \mathscr{A}_{0}^{2}=\operatorname{rank} \mathscr{A}_{0}^{3}=\operatorname{rank} \mathscr{A}_{0} \mathscr{A}_{1} \mathscr{A}_{0}^{2}=\operatorname{rank} \mathscr{A}_{0}^{2} \mathscr{A}_{1}^{2}=2$ with the first two rows being zero, and
rank $\mathscr{A}_{1}^{2}=\operatorname{rank} \mathscr{A}_{1}^{3}=\operatorname{rank} \mathscr{A}_{1}^{2} \mathscr{A}_{0}^{2}=\operatorname{rank} \mathscr{A}_{1} \mathscr{A}_{0} \mathscr{A}_{1}^{2}=2$ with the last two rows being zero.

Hence the procedure of [7] stops and it follows that Φ is 1.1. i.
Next we consider the problem whether a 1.1.i. refinable function vector can have components with holes. The answer is positive and we present the following example.

Example 3. Let $\Phi=\left(\phi_{1}, \phi_{2}\right)^{T}$ be a nonzero compactly supported solution of the refinement equation

$$
\begin{aligned}
\Phi(t)= & \left(\begin{array}{ll}
1 / 9 & 2 / 3 \\
1 / 9 & 1 / 3
\end{array}\right) \Phi(2 t)+\left(\begin{array}{ll}
1 / 3 & 1 \\
1 / 3 & 0
\end{array}\right) \Phi(2 t-1)+\left(\begin{array}{ll}
2 / 3 & 0 \\
1 / 9 & 0
\end{array}\right) \Phi(2 t-2) \\
& +\left(\begin{array}{cc}
0 & 0 \\
1 / 3 & 0
\end{array}\right) \Phi(2 t-7)
\end{aligned}
$$

Then Φ is continuous and 1.1. i. Moreover, $\operatorname{supp} \phi_{1}=[0,3]$ and gsupp $\phi_{2}=[0,5]$ and ϕ_{2} possesses a hole of length 1 , namely $\phi_{2}(t)=0$ for $t \in(5 / 2,7 / 2)$, see Fig. 3 .

Fig. 3. Locally linearly independent $\Phi(t)$ where $\operatorname{supp} \phi_{2}$ possesses a hole.

Proof. We first prove continuity of Φ. The matrix $\frac{1}{2} \sum_{k=0}^{7} A(k)$ has the eigenvalues 1 and $-5 / 18$. Further, the mask satisfies the sum rule of order 1 , namely, $(1,1)(A(0)+$ $A(2))=(1,1)=(1,1)(A(1)+A(7))$. Hence, the (14×14)-matrices \mathscr{A}_{0} and \mathscr{A}_{1} both have the eigenvalue 1 with the corresponding left row eigenvector $e_{1}^{T}:=(1,1, \ldots, 1)$. Moreover, \mathscr{A}_{0} and \mathscr{A}_{1} are column-stochastic matrices, i.e., all entries in \mathscr{A}_{0} and \mathscr{A}_{1} are nonnegative and the sum of entries in each column is 1 . Observe that a product of two column-stochastic matrices is again column-stochastic. A column-stochastic matrix is called scrambling if each pair of columns of A has positive entries in some common row. In particular, if A is column-stochastic and has a positive row, then A is scrambling.

Consider the subspace U of \mathbb{R}^{14},

$$
U:=\left\{u \in \mathbb{R}^{14}: e_{1}^{T} u=0\right\} .
$$

We apply the following result of Jia and Zhou [16] for stochastic matrices: A columnstochastic matrix is scrambling if and only if $\left\|\left.A\right|_{U}\right\|<1$, where $\|\cdot\|$ denotes the maximum column sum norm of a matrix.

Hence continuity of Φ is already proved if we can find a $k \in \mathbb{N}$ such that for each k tuple $\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right), \varepsilon_{1}, \ldots, \varepsilon_{k} \in\{0,1\}$, the matrix product $\mathscr{A}_{\varepsilon_{1}} \ldots \mathscr{A}_{\varepsilon_{k}}$ has a positive row (see [16, Theorem 1.1]).

A computation by Maple tells us for the matrix products $A_{\varepsilon_{1}} A_{\varepsilon_{2}} A_{\varepsilon_{3}}$ with $\varepsilon_{j} \in\{0,1\}$: If $\left(\varepsilon_{1}, \varepsilon_{2}\right) \neq(1,1)$, then the third and fourth rows of the matrix product are positive, while for $\left(\varepsilon_{1}, \varepsilon_{2}\right)=(1,1)$, even the first four rows of the matrix product are positive. This shows that all the column-stochastic matrices of the form $A_{\varepsilon_{1}} A_{\varepsilon_{2}} A_{\varepsilon_{3}}$ are scrambling. Hence the joint spectral radius $\rho\left(\left.\mathscr{A}_{0}\right|_{U},\left.\mathscr{A}_{1}\right|_{U}\right)$ is less than 1. Therefore, the subdivision scheme associated with this mask converges uniformly, and Φ is continuous.

Let us now consider the space V, generated by an eigenvector of $\frac{1}{2}\left(\mathscr{A}_{0}+\mathscr{A}_{1}\right)$ to the eigenvalue 1 ,

$$
v_{0}=(6294,50221 / 15,12195,12850 / 3,4203,689,0,1049,0,2733,0,0,0,0)^{T} .
$$

Then V is spanned by the vectors $v_{0}, \mathscr{A}_{0} v_{0}, \mathscr{A}_{0}^{2} v_{0}, \mathscr{A}_{1} \mathscr{A}_{0} v_{0}, \mathscr{A}_{0}^{3} v_{0}, \mathscr{A}_{1} \mathscr{A}_{0}^{2} v_{0}$, $\mathscr{A}_{0} \mathscr{A}_{1} \mathscr{A}_{0} v_{0}, \mathscr{A}_{1}^{2} \mathscr{A}_{0} v_{0}$ and has dimension 8.

Let \mathscr{B} be a (14×8)-matrix, such that the columns of \mathscr{B} form a basis of V. Then \mathscr{B} has 6 zero rows, namely the 7th, 9th, 11th, 12th, 13th and 14th row. Hence, by Theorem A, Φ is linearly independent on $(0,1)$. Since for continuous Φ, V contains $\boldsymbol{\Phi}(t)=(\Phi(t+k))_{k=0}^{6}$ for $t \in(0,1)$, it follows that gsupp $\phi_{1}=[0,3]$ and gsupp $\phi_{2}=[0,5]$.

We define the restricted vector $\tilde{\boldsymbol{\Phi}}(t)$ for $t \in[0,1)$ as

$$
\begin{aligned}
\tilde{\boldsymbol{\Phi}}(t)= & \left(\phi_{1}(t), \phi_{2}(t), \phi_{1}(t+1), \phi_{2}(t+1), \phi_{1}(t+2),\right. \\
& \left.\phi_{2}(t+2), \phi_{2}(t+3), \phi_{2}(t+4)\right)^{T} .
\end{aligned}
$$

Then $\tilde{V}=\operatorname{span}\{\tilde{\boldsymbol{\Phi}}(t): t \in[0,1)\}$ has dimension 8.
Further, let us consider the matrices $\mathscr{B}_{0}, \mathscr{B}_{1}$, which are derived from $\mathscr{A}_{0}, \mathscr{A}_{1}$ by restricting to $\tilde{\boldsymbol{\Phi}}$, i.e., by deleting the 7 th, 9 th, 11 th, 12 th, 13 th and 14 th rows and columns of $\mathscr{A}_{0}, \mathscr{A}_{1}$,

$$
9 \mathscr{B}_{0}=\left(\begin{array}{llllllll}
1 & 6 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\
6 & 0 & 3 & 9 & 1 & 6 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 6 & 0 & 9 & 6 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \quad 9 \mathscr{B}_{1}=\left(\begin{array}{cccccccc}
3 & 9 & 1 & 6 & 0 & 0 & 0 & 0 \\
3 & 0 & 1 & 3 & 0 & 0 & 0 & 0 \\
0 & 0 & 6 & 0 & 3 & 9 & 6 & 0 \\
0 & 0 & 1 & 0 & 3 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 9 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 & 0 & 0 & 0
\end{array}\right) .
$$

Observe that then (3) is of the form

$$
\tilde{\boldsymbol{\Phi}}(t / 2)=\mathscr{B}_{0} \tilde{\mathbf{\Phi}}(t), \quad \tilde{\boldsymbol{\Phi}}((t+1) / 2)=\mathscr{B}_{1} \tilde{\boldsymbol{\Phi}}(t), \quad t \in[0,1) .
$$

Now we can choose \mathscr{B} to be the 8×8 identity matrix and the procedure of Goodman et al. [7] (with $\mathscr{B}_{0}, \mathscr{B}_{1}$ instead of $\mathscr{A}_{0}, \mathscr{A}_{1}$) gives
$\operatorname{rank} \mathscr{B}_{0}=\operatorname{rank} \mathscr{B}_{0}^{2}=\operatorname{rank} \mathscr{B}_{0} \mathscr{B}_{1}=7$ and the 7 th rows are zero, $\operatorname{rank} \mathscr{B}_{1}=\operatorname{rank} \mathscr{B}_{1} \mathscr{B}_{0}=\operatorname{rank} \mathscr{B}_{1} \mathscr{B}_{1}=7$ and the 6 th rows are zero.

Hence, Φ is 1.1. i. Moreover, ϕ_{2} possesses a hole of length 1 , namely $\phi_{2}(t)=0$ for $t \in(5 / 2,7 / 2)$.

Remark. A similar example of a continuous 1.1. i. function vector with one hole can be found in [20].

However, in certain cases one can show that the components of Φ cannot have holes.

Theorem 2. Let $\Phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{T}$ be a locally linearly independent vector of compactly supported L^{1}-functions satisfying

$$
\Phi(t)=\sum_{k=0}^{N} A(k) \Phi(2 t-k)
$$

for some $N \in \mathbb{N}$. Suppose that $A(0)$ and $A(N)$ contain no zero row. Then all nonzero components of Φ have support $[0, N]$, and in particular, they have no holes.

Proof. Deleting zero components of Φ, we may assume that each component ϕ_{v} of Φ is nonzero.

We show first that gsupp $\phi_{v}=[0, N], v=1, \ldots, r$.
Let gsupp $\phi_{v}=\left[a_{v}, b_{v}\right]$. We find from (3) that for each fixed μ,

$$
\phi_{\mu}(t / 2)=\sum_{v=1}^{r} A_{\mu, v}(0) \phi_{v}(t)+\sum_{k=1}^{N} \sum_{v=1}^{r} A_{\mu, v}(k) \phi_{v}(t-k) .
$$

Since $A(0)$ has no zero rows, at least one of the coefficients $A_{\mu, v}(0)$ is nonzero. On the interval $\left(-\infty, 2 a_{\mu}\right), \phi_{\mu}(t / 2)$ vanishes. By the local linear independence, for each v with $A_{\mu, v}(0) \neq 0$ it follows that $\phi_{v}(t)=0$ on this interval. Hence $a_{v} \geqslant 2 a_{\mu}$, i.e., $a_{\mu} \leqslant \frac{1}{2} a_{v}$. Hence, by local linear independence, for all $\mu \in\{1, \ldots, r\}$ there exists a v with $2 a_{\mu}-a_{v}=0$.

Same arguments as in the proof of Theorem 1 imply that for all a_{μ} with μ in a cycle $\left\{\mu_{1}, \ldots, \mu_{d}\right\}$, we have $a_{\mu_{1}} \leqslant \frac{1}{2} a_{\mu_{2}} \leqslant \cdots \leqslant \frac{1}{2^{d}} a_{\mu_{d}} \leqslant \frac{1}{2^{d+1}} a_{\mu_{1}}$. But $a_{\mu_{1}} \geqslant 0$. Then $a_{\mu_{1}}=\cdots=$ $a_{\mu_{d}}=0$. Further, for each $a_{\mu^{\prime}}$ with μ^{\prime} being not in a cycle, there exists a chain to a cycle and we find again $a_{\mu^{\prime}}=0$. Thus, for all components ϕ_{v} of Φ, gsupp ϕ_{v} starts at zero.

Analogously, using the assumption that $A(N)$ has no zero rows, it follows that $b_{v}=N$ for all $v=1, \ldots, r$.

Now, suppose that some components ϕ_{v} of Φ have holes (i.e., intervals (a, b) with $0<a<b<N$, where some ϕ_{v} is identically zero). Then there exist holes with greatest length. Let us choose a hole with greatest length. Without loss of generality we suppose that ϕ_{1} has such a hole (c, d) with $0<c<d<N$.

Refinability of Φ implies that

$$
\phi_{1}(t)=\sum_{v=1}^{r} \sum_{k=0}^{N} A_{1, v}(k) \phi_{v}(2 t-k) .
$$

On the interval $(c, d), \phi_{1}(t)=0$. By the local linear independence, for each (v, k) with $A_{1, v}(k) \neq 0$ the corresponding function ϕ_{v} needs to satisfy $\phi_{v}(t)=0$ for $t \in(2 c-$ $k, 2 d-k)$. But gsupp $\phi_{v}=[0, N]$ and ϕ_{v} does not have a hole with length $2(d-c)$. Hence either $2 c-k \geqslant N$ or $2 d-k \leqslant 0$.

If $c<N / 2$, then the above discussion tells us that for each (v, k) with $A_{1, v}(k) \neq 0,2 d-k \leqslant 0$. It follows that

$$
\phi_{1}(t)=\sum_{v=1}^{r} \sum_{k \geqslant 2 d} A_{1, v}(k) \phi_{v}(2 t-k) .
$$

Then gsupp $\phi_{1} \subset[d, N]$, contradicting the above observation that gsupp $\phi_{1}=[0, N]$.
In the same way, if $c \geqslant N / 2$, then $d>N / 2$, and

$$
\phi_{1}(t)=\sum_{v=1}^{r} \sum_{k \leqslant 2 c-N} A_{1, v}(k) \phi_{v}(2 t-k) .
$$

Then gsupp $\phi_{1} \subset[0, c]$, which is again a contradiction. Therefore, ϕ_{v} cannot have holes.

Remark. We want to remark, that for g. l.i. function vectors Φ it has been shown by Ruch et al. [22] that $\cup_{v=1}^{r} \operatorname{supp} \phi_{v}=[0, N]$ if and only if A_{0} and A_{N} are not nilpotent. Recently, Micchelli and Zhou [19] have studied the positivity of scalar refinable functions with nonnegative masks (inside the supports).

4. Bases of shift-invariant spaces

Let $\Phi \in\left(L^{1}(\mathbb{R})\right)^{r}$ be a vector of compactly supported functions $\phi_{v}, v=1, \ldots, r$. Denote by $S(\Phi)$ the linear space of all functions of the form

$$
\begin{equation*}
\sum_{v=1}^{r} \sum_{k \in \mathbb{Z}} c_{v}(k) \phi_{v}(\cdot-k) \tag{5}
\end{equation*}
$$

with arbitrary sequences $c_{v}: \mathbb{Z} \rightarrow \mathbb{R}$. The space $S(\Phi)$ is a finitely generated shiftinvariant space (FSI-space). The components ϕ_{v} of Φ are called generators of $S(\Phi)$. Further, let $S_{0}(\Phi)$ be the linear span of $\left\{\phi_{v}(\cdot-l): v=1, \ldots r, l \in \mathbb{Z}\right\}$, i.e., $S_{0}(\Phi)$ contains only finite linear combinations of $\phi_{v}(\cdot-l)$.

We want to deal with the following problem: Does an FSI-space $S(\Phi)$ possess a linearly independent basis over $(0,1)$?

Our considerations are based on the following.
Theorem B. (Jia [12]). Let $\Phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{T}$ be a vector of compactly supported distributions on \mathbb{R}. Then there exists a distribution vector $\Psi=\left(\psi_{1}, \ldots, \psi_{s}\right)^{T}$ with the following properties:
(a) Ψ is globally linearly independent.
(b) $\Phi \subset S_{0}(\Psi)$, i.e., all components ϕ_{v} of Φ are finite linear combinations of integer translates of $\psi_{1}, \ldots, \psi_{s}$.
(c) $s \leqslant r$.
(d) $S(\Phi)=S(\Psi)$. Furthermore, if $\Phi \in\left(L^{1}(\mathbb{R})\right)^{r}$, then Ψ can be chosen with $\Psi \in\left(L^{1}(\mathbb{R})\right)^{s}$.

In particular, each FSI-space $S(\Phi)$ possesses a globally linearly independent basis. This assertion is true even without assuming refinability of the vector Φ. Can we obtain a stronger result as formulated above? Unfortunately not, we obtain

Counterexample 1. Let $\Phi=\left(\phi_{1}, \phi_{2}\right)^{T}$ with ϕ_{1} the normalized linear cardinal B spline with support $[0,2]$ (hat function) satisfying

$$
\phi_{1}(t)=\frac{1}{2} \phi_{1}(2 t)+\phi_{1}(2 t-1)+\frac{1}{2} \phi_{1}(2 t-2)
$$

and with ϕ_{2} satisfying the refinement equation

$$
\phi_{2}(t)=\frac{1}{2} \phi_{2}(2 t)+\frac{1}{2} \phi_{1}(2 t-6)+\phi_{1}(2 t-9) .
$$

Then Φ is a refinable vector of compactly supported, continuous functions and the FSI-space $S(\Phi)$ does not possess a linearly independent basis over $(0,1)$, see Fig. 4.

Proof. We observe that supp $\phi_{2} \subset[0,11 / 2]$. The (12×12)-matrices \mathscr{A}_{0} and \mathscr{A}_{1} can be simply derived from the refinement equations.

Let $\boldsymbol{\Phi}(t):=\left(\Phi(t)^{T}, \Phi(t+1)^{T}, \ldots, \Phi(t+5)^{T}\right)^{T} \in \mathbb{R}^{12}$. Then from (3) one obtains that the space $V=V_{\Phi}:=\{\boldsymbol{\Phi}(t): t \in[0,1)\}$ is spanned by

$$
\begin{aligned}
& \boldsymbol{\Phi}(0)=(0,0,1,0,0,0,0,0,0,0,0,1)^{T} \\
& \boldsymbol{\Phi}(1 / 2)=(1 / 2,0,1 / 2,0,0,1 / 2,0,1 / 2,0,0,0,0)^{T} \\
& \boldsymbol{\Phi}(1 / 4)=(1 / 4,0,3 / 4,1 / 4,0,0,0,1 / 4,0,0,0,1 / 2)^{T}, \\
& \boldsymbol{\Phi}(3 / 4)=(3 / 4,0,1 / 4,1 / 4,0,0,0,1 / 4,0,1 / 2,0,0)^{T}, \\
& \boldsymbol{\Phi}(3 / 8)=(3 / 8,0,5 / 8,0,0,1 / 4,0,3 / 8,0,0,0,1 / 4)^{T} \\
& \boldsymbol{\Phi}(5 / 8)=(5 / 8,1 / 8,3 / 8,1 / 8,0,1 / 4,0,3 / 8,0,1 / 4,0,0)^{T} .
\end{aligned}
$$

The orthogonal complement W of V is spanned by the unit vectors $e_{5}, e_{7}, e_{9}, e_{11}$ and further by the vectors $w_{1}=(0,0,-1,0,0,0,0,1,0,0,0,1)^{T}$ and $w_{2}=(-1,0,0,0,0,0$, $0,1,0,1,0,0)^{T}$. Here, a unit vector e_{j} is defined by $e_{j}=\left(\delta_{j, k}\right)_{k=1}^{12}$ with δ the Kronecker

Fig. 4. $\Phi(t)$ generating no linearly independent basis over $(0,1)$ of $S(\Phi)$.
symbol. The unit vectors in W are due to the support of ϕ_{1} (being [0,2] only). The vectors w_{1}, w_{2} imply the local dependencies

$$
\begin{aligned}
& -\phi_{1}(t)+\phi_{2}(t+3)+\phi_{2}(t+4)=0 \\
& -\phi_{1}(t+1)+\phi_{2}(t+3)+\phi_{2}(t+5)=0
\end{aligned}
$$

for $t \in(0,1)$, i.e., Φ is linearly dependent over $(0,1)$.
However, it can be simply observed that Φ is globally linearly independent, since W does not contain any vector of the form

$$
\left(c_{0}, c_{1}, c_{0} \rho, c_{1} \rho, c_{0} \rho^{2}, c_{1} \rho^{2}, c_{0} \rho^{3}, c_{1} \rho^{3}, c_{0} \rho^{4}, c_{1} \rho^{4}, c_{0} \rho^{5}, c_{1} \rho^{5}\right)^{T}
$$

with constants c_{0}, c_{1}, ρ (cf. [14, Theorem 3.3]).
We now prove, that there exists no basis of $S(\Phi)$ being linearly independent over $(0,1)$ by showing that the assumption that such a basis exists leads to a contradiction.

Suppose that there exists a refinable function vector $\Psi=\left(\psi_{1}, \psi_{2}\right)$ with $S(\Psi)=$ $S(\Phi)$ and with Ψ being linearly independent over $(0,1)$. Then there exists a finite linear combination

$$
\phi_{1}(t)=\sum_{k \in \mathbb{Z}}\left(a_{k} \psi_{1}(t-k)+b_{k} \psi_{2}(t-k)\right), \quad a_{k}, b_{k} \in \mathbb{R} .
$$

Since $\operatorname{supp} \phi_{1}=[0,2]$ it follows from the linear independence of Ψ over $(0,1)$ that $a_{k}=0$ if $\operatorname{supp} \psi_{1}(\cdot-k) \nsubseteq[0,2]$ and $b_{k}=0$ if $\operatorname{supp} \psi_{2}(\cdot-k) \nsubseteq[0,2]$. Hence, at least one of the functions ψ_{1}, ψ_{2} has support contained in [0,2]. Let us suppose that $\operatorname{supp} \psi_{1} \subseteq[0,2]$. Since $S(\Phi)=S(\Psi)$, it follows that V_{Φ} and V_{Ψ} have the same dimension 6, thus the length of $\operatorname{supp} \psi_{2}$ must be greater than 2 and we have

$$
\phi_{1}(t)=\sum_{k \in \mathbb{Z}} a_{k} \psi_{1}(t-k) .
$$

Considering the Fourier transforms $\widehat{\Phi}=\left(\widehat{\phi}_{1}, \widehat{\phi}_{2}\right)^{T}$ and $\widehat{\Psi}=\left(\widehat{\psi}_{1}, \widehat{\psi}_{2}\right)^{T}$, we hence find

$$
\widehat{\Phi}(u)=\left(\begin{array}{cc}
g_{1}\left(e^{-i u}\right) & 0 \\
g_{3}\left(e^{-i u}\right) & g_{4}\left(e^{-i u}\right)
\end{array}\right) \widehat{\Psi}(u)
$$

with appropriate algebraic Laurent polynomials g_{1}, g_{3}, g_{4}. Since both Φ and Ψ are globally linearly independent, it follows that the transformation matrix is invertible for all $u \in \mathbb{C}$, and $g_{1}(z), g_{4}(z)$ have no zeros in $\mathbb{C} \backslash\{0\}$ (see [14]). But this is only true if $g_{1}(z)=z^{j_{1}}, g_{4}(z)=z^{j_{2}}$ for some integers j_{1}, j_{2}.

Without loss of generality, we can assume that supp ψ_{1} and supp ψ_{2} start in $[0,1)$. Hence $\phi_{1}(t)=a_{0} \psi_{1}(t)$, i.e., ψ_{1} is the hat function. Further, according to $g_{4}(z)=z^{j_{2}}$ and to the assumed linear independence of Ψ, ϕ_{2} satisfies

$$
\phi_{2}(t)=\sum_{k=0}^{4} c_{k} \psi_{1}(t-k)+d_{j_{2}} \psi_{2}\left(t-j_{2}\right), \quad c_{k}, d_{j_{2}} \in \mathbb{R}
$$

such that $\operatorname{supp} \psi_{2}\left(\cdot-j_{2}\right) \subseteq[0,6]$. Now, the structure of ϕ_{2} implies that $j_{2}=0$, since $\phi_{2}(t), t \in[0,1)$, cannot be represented by the hat function $\psi_{1}(t)$. Hence the dependence relation $-\phi_{1}(t)+\phi_{2}(t+3)+\phi_{2}(t+4)=0$ for $t \in(0,1)$ causes

$$
\begin{aligned}
& -a_{0} \psi_{1}(t)+\left(d_{0} \psi_{2}(t+3)+c_{2} \psi_{1}(t+1)+c_{3} \psi_{1}(t)\right) \\
& \quad+\left(d_{0} \psi_{2}(t+4)+c_{3} \psi_{1}(t+1)+c_{4} \psi_{1}(t)\right)=0
\end{aligned}
$$

for $t \in(0,1)$, i.e., Ψ is not linearly independent over $(0,1)$ and we have found the desired contradiction.

Finally, let us consider the following question: Let Φ be a refinable vector of compactly supported L^{1}-functions. If Φ is globally linearly independent, is there a finite interval $\left(t_{1}, t_{2}\right), t_{1}, t_{2} \in \mathbb{R}$, such that Φ is linearly independent over $\left(t_{1}, t_{2}\right)$?

We find the following.
Counterexample 2. Let $\Phi=\left(\phi_{1}, \phi_{2}\right)^{T}$ with $\phi_{1}(t)=\chi_{[0,1)}(t)$, where $\chi_{[0,1)}$ denotes the characteristic function on $[0,1)$, and with

$$
\phi_{2}(t)=\sum_{j=1}^{\infty} \frac{1}{2^{j-1}}\left(\chi_{[0,1)}\left(2^{j} t-2\right)+\chi_{[0,1)}\left(2^{j} t-3\right)\right)
$$

Then Φ is a refinable, globally linearly independent vector of compactly supported L^{1}-functions being linearly dependent over any finite interval $\left(t_{1}, t_{2}\right), t_{1}, t_{2} \in \mathbb{R}$, see Fig. 5.

Proof. The vector Φ is refinable with

$$
\begin{aligned}
\phi_{1}(t) & =\phi_{1}(2 t)+\phi_{1}(2 t-1) \\
\phi_{2}(t) & =\frac{1}{2} \phi_{2}(2 t)+\phi_{1}(2 t-2)+\phi_{1}(2 t-3)
\end{aligned}
$$

Further, we find $\operatorname{supp} \phi_{1}=[0,1]$ and $\operatorname{supp} \phi_{2}=[0,2]$.
We first show that Φ is globally linearly independent. Let a, b be sequences such that

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}}\left(a(k) \phi_{1}(t-k)+b(k) \phi_{2}(t-k)\right)=0 \quad \text { for all } t \in \mathbb{R} \tag{6}
\end{equation*}
$$

Fig. 5. $\Phi(t)$ being g.l.i. but not linearly dependent on any interval $\left(t_{1}, t_{2}\right)$.

Suppose first that one component of b is nonzero, say $b(l) \neq 0$ for a fixed $l \in \mathbb{Z}$. Considering (6) for $t \in(l, l+1)$, we obtain (according to the support of ϕ_{1}, ϕ_{2})

$$
a(l) \phi_{1}(t-l)+b(l) \phi_{2}(t-l)+b(l-1) \phi_{2}(t-l+1)=0
$$

and by definition of ϕ_{1} and ϕ_{2} hence

$$
a(l)+b(l) \phi_{2}(t-l)+b(l-1)=0
$$

since $\phi_{1}(t-l)$ and $\phi_{2}(t-l+1)$ are identically 1 for $t \in(l, l+1)$. However, $\phi_{2}(t-l)$ can take all values $1 / 2^{n}, n=1,2, \ldots$. Hence the above equation can only be satisfied if $b(l)=0$, contradicting our assumption. Thus, b is a zero sequence. But now, (6) simply implies that also a must be a zero sequence, i.e., Φ is globally linearly independent.

However, Φ is linearly dependent over every finite interval $\left(t_{1}, t_{2}\right) \subset \mathbb{R}$, since we find

$$
-\phi_{1}\left(t-N_{1}\right)+\phi_{2}\left(t-N_{1}+1\right)=0 \quad \text { for all } t \in\left(t_{1}, t_{2}\right)
$$

where N_{1} is the greatest integer less than t_{1}.

References

[1] D.-R. Chen, On linear independence of integer translates of refinable vectors, J. Math. Anal. Appl. 222 (1998) 397-410.
[2] H.L. Cheung, C. Tang, D.-X. Zhou, Supports of locally linearly independent M-refinable functions, attractors of iterated function systems and tilings, Adv. Comput. Math. 17 (2002) 257-268.
[3] D. Colella, C. Heil, Characterizations of scaling functions: continuous solutions, SIAM J. Matrix Anal. Appl. 15 (1994) 496-518.
[4] W. Dahmen, C.A. Micchelli, On the local linear independence of translates of a box spline, Studia Math. 82 (1985) 243-262.
[5] R. De Vore, B. Jawerth, V. Popov, Compression of wavelet decompositions, Amer. J. Math. 114 (1992) 737-785.
[6] T.N.T. Goodman, S.L. Lee, Refinable vectors of spline functions, in: M. Daehlen, T. Lyche, L.L. Schumaker (Eds.), Methods for Curves and Surfaces II, Vanderbilt University Press, Nashville, 1998, pp. 213-220.
[7] T.N.T. Goodman, R.Q. Jia, D.-X. Zhou, Local linear independence of refinable function vectors of functions, Proc. Roy. Soc. Edinburgh 130 (2000) 813-826.
[8] C. Heil, D. Collela, Matrix refinement equations: existence and uniqueness, J. Fourier Anal. Appl. 2 (1996) 363-377.
[9] T.A. Hogan, Stability and independence of the shifts of finitely many refinable functions, J. Fourier Anal. Appl. 3 (1997) 757-774.
[10] T.A. Hogan, R.Q. Jia, Dependence relations among the shifts of a multivariate refinable distribution, Constr. Approx. 17 (2001) 19-37.
[11] R.Q. Jia, Local linear independence of translates of a box spline, Constr. Approx. 1 (1985) 175-182.
[12] R.Q. Jia, Shift-invariant spaces on the real line, Proc. Amer. Math. Soc. 125 (1997) 785-793.
[13] R.Q. Jia, C.A. Micchelli, Using the refinement equation for the construction of pre-wavelets II: powers of two, in: P.J. Laurent, A. Le Méhauté, L.L. Schumaker (Eds.), Curves and Surfaces, Academic Press, New York, 1991, pp. 209-246.
[14] R.Q. Jia, C.A. Micchelli, On linear independence of integer translates of a finite number of functions, Proc. Edinburgh Math. Soc. 36 (1992) 69-85.
[15] R.Q. Jia, S.D. Riemenschneider, D.-X. Zhou, Vector subdivision schemes and multiple wavelets, Math. Comp. 67 (1998) 1533-1563.
[16] R.Q. Jia, D.-X. Zhou, Convergence of subdivision schemes associated with nonnegative masks, SIAM J. Matrix Anal. Appl. 21 (1999) 418-430.
[17] P.G. Lemarié, Fonctions a support compact dans les analyses multi-resolutions, Rev. Math. Iberoamericana 7 (1991) 157-182.
[18] Y. Meyer, Ondelettes sur I'intervalle, Rev. Math. Iberoamericana 7 (1991) 115-133.
[19] C.A. Micchelli, D.-X. Zhou, Refinable functions: positivity and interpolation, Anal. Appl., 2003, to appear.
[20] G. Plonka, How many holes can locally linearly independent refinable function vectors have?, in: J. Levesley, I. Anderson, J.C. Mason (Eds.), Algorithms in Approximation IV, The University of Huddersfield, 2002, pp. 378-393.
[21] A. Ron, Characterizations of linear independence and stability of the shifts of a univariate refinable function in terms of its refinement mask, 1992, manuscript.
[22] D. Ruch, W. So, J.-Z. Wang, Global support of a scaling vector, Appl. Comput. Harmon. Anal. 5 (1998) 493-498.
[23] I.J. Schoenberg, Cardinal Spline Interpolation, in: CBMS, Vol. 12, SIAM, Philadelphia, 1973.
[24] W. So, J.-Z. Wang, Estimating the support of a scaling vector, SIAM J. Matrix Anal. Appl. 18 (1997) 66-73.
[25] Q.Y. Sun, Two-scale difference equation: local and global linear independence, 1991, manuscript.
[26] J.Z. Wang, Stability and linear independence associated with scaling vectors, SIAM J. Math. Anal. 29 (1998) 1140-1156.

[^0]: ${ }^{*}$ Corresponding author.
 E-mail addresses: plonka@math.uni-duisburg.de (G. Plonka), mazhou@math.cityu.edu.hk (D.-X. Zhou).
 ${ }^{1}$ Zhou was supported by Research Grants Council of Hong Kong under grant CityU 1065/00P.

